Tiedosto:Super-earth.jpg
Alkuperäinen tiedosto (1 080 × 1 080 kuvapistettä, 556 KiB, MIME-tyyppi: image/jpeg)
Tämä tiedosto on jaettu kohteesta Wikimedia Commons ja muut projektit saattavat käyttää sitä. Tiedot tiedoston kuvaussivulta näkyvät alla.
Yhteenveto
KuvausSuper-earth.jpg |
English: A Super-Earth is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term.In general, super-Earths are defined by their masses, and the term does not imply temperatures, compositions, orbital properties, habitability, or environments. While sources generally agree on an upper bound of 10 Earth masses (~69% of the mass of Uranus, which is the Solar System's giant planet with the least mass), the lower bound varies from 1 or 1.9 to 5, with various other definitions appearing in the popular media. The term "super-Earth" is also used by astronomers to refer to planets bigger than Earth-like planets (from 0.8 to 1.2 Earth-radius), but smaller than mini-Neptunes (from 2 to 4 Earth-radii). This definition was made by the Kepler space telescope personnel. Some authors further suggest that the term Super-Earth might be limited to rocky planets without a significant atmosphere, or planets that have not just atmospheres but also solid surfaces or oceans with a sharp boundary between liquid and atmosphere, which the four giant planets in the Solar System do not have. Planets above 10 Earth masses are termed massive solid planets, mega-Earths, or gas giant planets, depending on whether they are mostly rock and ice or mostly gas.Due to the larger mass of super-Earths, their physical characteristics may differ from Earth's; theoretical models for super-Earths provide four possible main compositions according to their density: low-density super-Earths are inferred to be composed mainly of hydrogen and helium (mini-Neptunes); super-Earths of intermediate density are inferred to either have water as a major constituent (ocean planets), or have a denser core enshrouded with an extended gaseous envelope (gas dwarf or sub-Neptune). A super-Earth of high density is believed to be rocky and/or metallic, like Earth and the other terrestrial planets of the Solar System. A super-Earth's interior could be undifferentiated, partially differentiated, or completely differentiated into layers of different composition. A study on Gliese 876 d by a team around Diana Valencia revealed that it would be possible to infer from a radius measured by the transit method of detecting planets and the mass of the relevant planet what the structural composition is. For Gliese 876 d, calculations range from 9,200 km (1.4 Earth radii) for a rocky planet and very large iron core to 12,500 km (2.0 Earth radii) for a watery and icy planet.The limit between rocky planets and planets with a thick gaseous envelope is calculated with theoretical models. Calculating the effect of the active XUV saturation phase of G-type stars over the loss of the primitive nebula-captured hydrogen envelopes in extrasolar planets, it's obtained that planets with a core mass of more than 1.5 Earth-mass (1.15 Earth-radius max.), most likely cannot get rid of their nebula captured hydrogen envelopes during their whole lifetime. Other calculations point out that the limit between envelope-free rocky super-Earths and sub-Neptunes is around 1.75 Earth-radii, as 2 Earth-radii would be the upper limit to be rocky (a planet with 2 Earth-radii and 5 Earth-masses with a mean Earth-like core composition would imply that 1/200 of its mass would be in a H/He envelope, with an atmospheric pressure near to 2.0 GPa or 20,000 bar). Whether or not the primitive nebula-captured H/He envelope of a super-Earth is entirely lost after formation also depends on the orbital distance. For example, formation and evolution calculations of the Kepler-11 planetary system show that the two innermost planets Kepler-11b and c, whose calculated mass is≈2 M🜨 and between ≈5 and 6 M🜨 respectively (which are within measurement errors), are extremely vulnerable to envelope loss. In particular, the complete removal of the primordial H/He envelope by energetic stellar photons appears almost inevitable in the case of Kepler-11b, regardless of its formation hypothesis.If a super-Earth is detectable by both the radial-velocity and the transit methods, then both its mass and its radius can be determined; thus its average bulk density can be calculated. The actual empirical observations are giving similar results as theoretical models, as it's found that planets larger than approximately 1.6 Earth-radius (more massive than approximately 6 Earth-masses) contain significant fractions of volatiles or H/He gas (such planets appear to have a diversity of compositions that is not well-explained by a single mass-radius relation as that found in rocky planets). After measuring 65 super-Earths smaller than 4 Earth-radii, the empirical data points out that Gas Dwarves would be the most usual composition: there is a trend where planets with radii up to 1.5 Earth-radii increase in density with increasing radius, but above 1.5 radii the average planet density rapidly decreases with increasing radius, indicating that these planets have a large fraction of volatiles by volume overlying a rocky core. Another discovery about exoplanets' composition is that about the gap or rarity observed for planets between 1.5 and 2.0 Earth-radii, which is explained by a bimodal formation of planets (rocky Super-Earths below 1.75 and sub-Neptunes with thick gas envelopes being above such radii).Additional studies, conducted with lasers at the Lawrence Livermore National Laboratory and at the OMEGA laboratory at the University of Rochester show that the magnesium-silicate internal regions of the planet would undergo phase changes under the immense pressures and temperatures of a super-Earth planet, and that the different phases of this liquid magnesium silicate would separate into layers. |
Päiväys | |
Lähde | Oma teos |
Tekijä | Pablo Carlos Budassi |
Planet concept illustrated especially for Wikimedia Commons by Pablo Carlos Budassi. Source: https://www.pablocarlosbudassi.com/2021/02/planet-types.html Background image by ESO/Serge Brunier: https://commons.wikimedia.org/wiki/File:ESO_-_Milky_Way.jpg Suggestions for improving this image are welcome: pablocarlosbudassi@gmail.com
Lisenssi
- Voit:
- jakaa – kopioida, levittää ja esittää teosta
- remiksata – valmistaa muutettuja teoksia
- Seuraavilla ehdoilla:
- nimeäminen – Sinun on mainittava lähde asianmukaisesti, tarjottava linkki lisenssiin sekä merkittävä, mikäli olet tehnyt muutoksia. Voit tehdä yllä olevan millä tahansa kohtuullisella tavalla, mutta et siten, että annat ymmärtää lisenssinantajan suosittelevan sinua tai teoksen käyttöäsi.
- jaa samoin – Jos muutat tai perustat tähän työhön, voit jakaa tuloksena syntyvää työtä vain tällä tai tämän kaltaisella lisenssillä.
Kohteet, joita tässä tiedostossa esitetään
esittää
Jotkut arvot ilman kohdetta Wikidata
30. toukokuu 2008
Tiedoston historia
Päiväystä napsauttamalla näet, millainen tiedosto oli kyseisellä hetkellä.
Päiväys | Pienoiskuva | Koko | Käyttäjä | Kommentti | |
---|---|---|---|---|---|
nykyinen | 15. elokuuta 2023 kello 17.21 | 1 080 × 1 080 (556 KiB) | Celestialobjects | Uploaded own work with UploadWizard |
Tiedoston käyttö
Seuraava sivu käyttää tätä tiedostoa:
Tiedoston järjestelmänlaajuinen käyttö
Seuraavat muut wikit käyttävät tätä tiedostoa:
- Käyttö sivustolla ca.wikipedia.org
- Käyttö sivustolla en.wikipedia.org
- Käyttö sivustolla min.wiktionary.org
Metatieto
Tämä tiedosto sisältää esimerkiksi kuvanlukijan, digikameran tai kuvankäsittelyohjelman lisäämiä lisätietoja. Kaikki tiedot eivät enää välttämättä vastaa todellisuutta, jos kuvaa on muokattu sen alkuperäisen luonnin jälkeen.
Tekijä | Pablo Carlos Budassi |
---|---|
Tekijänoikeuden omistaja |
|
Otsikko | Artist's impression of a super-Earth |
Tekijä/toimittaja | Created by artist Pablo Carlos Budassi in 2023 (@pablocarlosbudassi) |
Lähde | https://pablocarlosbudassi.com |
Kuvan nimi |
|
Käyttöehdot |
|
Luontipäivämäärä | 26. maaliskuuta 2021 |
Leveys | 1 080 px |
Korkeus | 1 080 px |
Bittiä komponentissa |
|
Kuvapisteen koostumus | RGB |
Suunta | Normaali |
Komponenttien lukumäärä | 3 |
Kuvan resoluutio leveyssuunnassa | 72 dpi |
Kuvan resoluutio korkeussuunnassa | 72 dpi |
Käytetty ohjelmisto | Adobe Photoshop CS6 (Macintosh) |
Viimeksi muokattu | 12. elokuuta 2023 kello 23.25 |
Exif-versio | 2.21 |
Väriavaruus | sRGB |
Metatietojen viimeinen muokkauspäivämäärä | 12. elokuuta 2023 kello 20.25 |
Digitointipäivämäärä | 30. toukokuuta 2008 kello 09.09 |
Alkuperäisen asiakirjan tunniste | xmp.did:0080117407206811B65FEE6CD4839DCA |
Kohteen tyyppi | 13000000 science and technology |
Avainsanat |
|
Yhteystiedot | pablocarlosbudassi@gmail.com
www.pablocarlosbudassi.com https://www.pablocarlosbudassi.com/2021/02/planet-types.html Provincia del Chaco 2925 P.A. Mendoza, Mendoza, M5502 Argentina |