Tilastotiede on matematiikan haara, joka keskittyy mitattavan aineiston analysointiin ja tulkintaan. Aineiston perusteella voidaan tehdä tulevaisuutta koskevia ennusteita eli arvioida todennäköisyyttä, jolla jokin tapahtuma realisoituu, tai arvioida otoksen luotettavuutta. Tilastotieteeseen liittyy läheisesti todennäköisyyslaskenta. Tilastoja voidaan esittää graafisesti tai numeerisesti. Johtopäätöksiä tehtäessä on kuitenkin oleellista valita oikeat parametrit tulkinnan pohjaksi — tilastot voivat olla myös harhaanjohtavia.

Ennen aineiston käsittelyä on tiedettävä millä mitta-asteikolla kukin havainto on mitattu.

Tilastotieteen sovellusalueita ovat mm. vakuutustiede ja taloustiede.

Mitta-asteikot

muokkaa

Tilastotieteessä mitta-asteikolla tarkoitetaan sitä, millaisia vertailuja ja laskutoimituksia tilastoaineistolle voidaan tehdä. Havaintojen mitta-asteikko määrää ne tilastolliset välineet, joita analyysissä voidaan käyttää.

Yleensä käytetään neljää mitta-asteikkoa: luokitteluasteikko eli nominaaliasteikko, järjestysasteikko eli ordinaaliasteikko, välimatka-asteikko eli intervalliasteikko ja suhdeasteikko eli absoluuttinen asteikko

Luokitteluasteikko eli nominaaliasteikko

muokkaa

Tällä asteikolla voidaan tilastoida havaintoja, jotka voidaan luokitella johonkin ryhmään (esim. nainen/mies tai moottoripyörä/polkupyörä/henkilöauto).

Järjestysasteikko eli ordinaaliasteikko

muokkaa

Tämän asteikon ryhmät voidaan järjestää jonkin kriteerin avulla (esim. mineraalien kovuusluokka: pehmeä, normaali, kova tai korkeakoulututkinto: kandidaatti, maisteri, tohtori).

Välimatka-asteikko eli intervalliasteikko

muokkaa

Tällä asteikolla voidaan havainnosta laskea erotus (esim. fahrenheitasteikko ja celsiusasteikko).

Suhdeasteikko eli absoluuttinen asteikko

muokkaa

Tämän asteikon muuttujilla on yksikäsitteinen nollapiste, joten muuttujien välillä voidaan laskea osamääriä (esim. lämpötila kelvineinä tai henkilön vuosittaiset tulot).

Todennäköisyysjakaumia

muokkaa

Näistä voisi kirjoittaa: (Casella, Berger: Statistical inference Second edition s. 627)

  • Geometrinen jakauma
  • Negatiivinen binomijakauma
  • Poisson'n jakauma
  • Binomijakauma
  • Beta-binomijakauma
  • Diskreetti tasainen jakauma
  • Hypergeometrinen jakauma
  • Bernoullin jakauma
  • Normaalijakauma
  • Lognormaalijakauma
  • Betajakauma
  • Gammajakauma
  • Tasainen jakauma
  •  -jakauma
  • Cauchyn jakauma
  • F-jakauma
  • t-jakauma
  • Eksponentiaalinen jakauma
  • Weibullin jakauma
  • Kaksoiseksponentiaalinen jakauma

Käsitteitä

muokkaa

Huomaa että ennen aineiston käsittelyä on tiedettävä mitä mitta-asteikkoa käytät.

Frekvenssi

muokkaa

Frekvenssi kertoo kuinka monta havaintoa on annetussa havaintoluokassa.

Keskiluku

muokkaa

Aritmeettinen keskiarvo on havaintojen summa jaettuna havaintojen lukumäärällä. Puhekielessä keskiarvo tarkoittaa yleensä aritmeettista keskiarvoa.

Moodi eli tyyppiarvo on aineiston useimmin esiintyvä arvo, joka voidaan esittää jopa muuttujalle joka saa vain luokitteluarvoja, kuten nainen/mies.

Mediaani

muokkaa

Annetun jakauman   mediaani on luku  , jolle   ja  . [1]

Muut keskiluvut

muokkaa

Muita keskilukuja ovat mm. geometrinen keskiarvo ja harmoninen keskiarvo.

Usein puhutaan myös nk. painotetusta keskiarvosta, jolloin havainnon frekvenssillä tai jollain muulla muuttujalla korjataan laskelmia.

Hajontaluvut

muokkaa

Hajontalukuja tilastolliselle aineistolle ovat: varianssi ja keskihajonta.

varianssi  

keskihajonta  

missä n on tilastoarvojen määrä, μ on keskiarvo ja xi on tilastoarvo i.

otoskeskihajonta  n-1 =  

Varianssi on myös satunnaismuuttujille määritelty tunnusluku. Odotusarvon avulla merkittynä satunnaismuuttujan   varianssi on  .

Todennäköisyys

muokkaa

Todennäköisyys tai todennäköisyyslaskenta, jonka synnytti tutkimus uhkapelien kannattavuudesta. Nykyaikainen tutkimus käyttää apuvälineinä erityisesti mittateoriaa ja analyysiä. Peruskäsitteitä ovat todennäköisyysmitta, odotusarvo, satunnaismuuttuja ja jakauma. Arkikielen käsitettä todennäköisyys kuvaa satunnaisten tapahtumien jakaumia tai epätäsmällisen tiedon varmuutta. Nykyisin todennäköisyyslaskenta on aksiomatisoitu ja perustuu Kolmogorovin aksioomiin.

Perusteet

muokkaa

Nykymatematiikassa todennäköisyyden teoria on kehitetty mittateoreettisesta näkökulmasta siten, että monet todennäköisyyden peruskäsitteet yhtenevät mittateorian kanssa: tapahtumien joukko on sigma-algebra, todennäköisyys on mitta, satunnaismuuttuja on mitallinen kuvaus ja odotusarvo on integraali perusjoukon yli.

Koulumatematiikassa käytetään havainnollisempaa lähtökohtaa opetettaessa todennäköisyyslaskentaa, missä aloitetaan tarkastelu symmetrisistä alkeistapauksista ja muista jakaumista.

Tilastolliset testit

muokkaa

Tilastotieteessä hypoteesin tarkoitetaan populaation parametria koskevaa väitettä. Hypoteesin testaamisessa muodostetaan nollahypoteesi ja sen komplementtihypoteesi, jota kutsutaan vahtoehtoiseksi hypoteesiksi. Nollahypoteesia merkitään   ja vaihtoehtoista hypoteesia  . Hypoteesin testaamisessa määritellään, mitkä otoksen arvot päätös tekee kun   on voimassa ja mitkä otoksen arvot   hylkää kun   on voimassa.

Mihin mitäkin testiä käytetään? Yleisimmät testit:

  •  -testi
  • Friedmanin testi
  • Fisherin testi
  • Kolmogorovin–Smirnovin testi
  •  -testi

Regressioanalyysi

muokkaa
  • Mitä tarkoittaa?

Ohjelmia

muokkaa

Avoimen lähdekoodin ohjelmista ainakin Sagella ja R:llä voi tehdä tilastotieteen laskuja, kuvaajia ja kaavioita.

Linkit

muokkaa
  1. Casella, Berger:Statistical inference