← Kokonaislukukertoiminen polynomi · Lukion taulukot · Logaritmi →
Kun indeksi n {\displaystyle n} on
Parillinen juuri on määritelty vain, kun juurrettava a ≥ 0 {\displaystyle a\geq 0} .
( a n ) n = a {\displaystyle ({\sqrt[{n}]{a}})^{n}=a}
a n n = { a , kun n on pariton | a | , kun n on parillinen {\displaystyle {\sqrt[{n}]{a^{n}}}={\begin{cases}a,&{\text{kun }}n{\text{ on pariton}}\\|a|,&{\text{kun }}n{\text{ on parillinen}}\end{cases}}}
1. a b n = a n b n {\displaystyle {\sqrt[{n}]{ab}}={\sqrt[{n}]{a}}{\sqrt[{n}]{b}}}
2. a b n = a n b n {\displaystyle {\sqrt[{n}]{\frac {a}{b}}}={\frac {\sqrt[{n}]{a}}{\sqrt[{n}]{b}}}}
3. a n m = a m n = a m n {\displaystyle {\sqrt[{m}]{\sqrt[{n}]{a}}}={\sqrt[{n}]{\sqrt[{m}]{a}}}={\sqrt[{mn}]{a}}}
4. a m n = a k m k n {\displaystyle {\sqrt[{n}]{a^{m}}}={\sqrt[{kn}]{a^{km}}}}